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Sdution of the kinetic equation for the deposited 
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Abstract. The p a p  continues an investigation of the depth distribution of momenNm 
deposited in solids by ion bombardment. finite-threshold-energy effects being discussed. It 
is shown that, for a wide set of system parameters, existing semianalytical techniques lead to 
a qualitatively inoarreet description of momentum deposition, especially in the target surface 
region. The most important qualitative -res of the deposited momentum distribution 
are considered, which cannot be ignored when finding solutions of the kinetic equation by 
analytiwlly based methods or interpreting numerical simulation data. Corresponding analytical 
and numerical results nre presented. 

1. Introduction 

The present paper is devoted to the depth distribution of momentum deposited in amorphous 
or polycrystalline targets by ion bombardment [1-6]. Although the results partly are 
qualitatively valid for more general approaches, the momentum deposition for simplicity is 
treated below for a relatively simple and well known model: an infinite isotropic random 
medium, neglecting electronic energy losses, power cross-section for elastic collisions 
do@, T) = CE-mT-’-m dT, 0 e m < 1 [7-9,4,5] ,  and equal masses of an ion and target 
atoms. We consider the distribution of the component of deposited momentum normal to 
the target surface; it is the most interesting function of the problem due to applications to 
the theory of sputtering L2-4, 10, 111 and its complicated behaviour [ 2 , 5 ,  12, 61. 

The present paper continues the work [12], wherein the deposited momentum 
distribution was investigated in assuming that the slowing down process can continue to 
arbitrary low particle energies via binary collisions between freely moving atoms. Including 
effects of atomic binding can be performed, as a first approximation, by introducing 
a finite threshold energy W defined as ‘a minimum energy for a particle either to get 
displaced “permanently” from its original position or to displace other atoms: [9]. From 
a mathematical point of view, it is equivalent to the following boundary condition for the 
solutions of the kinetic equation: 

P ( Z ,  E ,  q )  = ( ~ M E ) ’ / * ~ s ( z )  for E < w (1) 
where z is a coordinate along the inner normal to the target surface, z = 0 at the surface; E, 
v ,  M are initial energy, direction cosine with respect to the z axis of velocity and mass of a 
projectile respectively; P(z,  E, q )  is the distribution to be found for E > W, P(z,  E, q )  dz 
being an average amount of momentum (z component) deposited in an interval (z, z +dz). 

The following circumstances have caused a special investigation of threshold energy 
effects. In them < case, the deposited momentum distribution cannot at all be defined to 
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be finite when neglecting threshold energy. For them > a region, although a solution of the 
kinetic equation exists in the W = 0 model, the W > 0 corrections are much greater than, 
for example, for the deposited energy or range distributions, and can hardly be neglected 
even for reasonable values W / E  << 1. Moreover, as was pointed out in [12], for W = 0 the 
function P(z,  E ,  q )  has a specific singularity at z = 0, and, hence, the finite-W corrections 
near the target surface can even be of essentially larger order than ones in the rest of 
the distribution. Thus, correct analysis of momentum deposition near the target surface, 
being very important due to the sputtering theory applications, cannot be performed without 
introducing a finite threshold energy. 

Although some analytical and numerical results will be presented below, this paper does 
not pretend to give the full and exact solution of the kinetic equation even for the simplified 
model being considered. First, it would be a rather complicated task; second, it is shown 
below that some parts of the solution in principle cannot be satisfactorily reconstructed by 
existing analytically based methods even for W << E. Moreover, the rough character of the 
model makes questionable the necessity of, say, exact tabulations of the solutions. So, the 
main attention is paid below to the most important qualitative features of the distribution, 
ignorance of which can lead (and often leads) to essentially incorrect calculations and 
understanding of characteristic behaviour of the deposited momentum profile, and which 
should be taken into account also for interpretation and interpolation of numerical simulation 
results. 

2. Moment-lie expansion of the distribution 

Modifying the usual argument [S,  91 to take (1) into account, we have in the standard 
conventional notation the following integrodifferential equation for P(z ,  E ,  q):  

E' ' ) e ( E  - W) N dm(p - P. - P") (2) az I --11 

where the second and third terms in the curly brackets represent the corresponding 
distributions for scattered and recoiling particles; @ ( E )  = 1 for E > 0 and = 0 
otherwise. The kinetic equation is completed by the momentum conservation condition, 
which determines the zeroth-order spatial moment of the distribution. 

For W = 0 and m > a [2, 121, the solution could be represented in the form 

"(2, E ,  q) = (2ME)'"NC/(3E")F(zNC/Ek, q ) .  (3) 

The dimensionless function F has been tabulated in [12]. In the W z 0 case, the quantity 
EW/NC is no longer a universal length unit, since W"/NC has the dimension of a length 
also; the representation (3) is not valid and the solution can not be reduced to the function 
of two independent variables. 

All the methods so far used for semianalytical calculation of the deposited momentum 
distribution are based upon reconstructing the function to be found from its spatial moments 
[2,5, 12, 61. So, in the present section we briefly consider the threshold energy corrections 
in the spatial moments, and discuss possibilities and limitations of the moments analysis 
approach. 

For W = 0, m > 4, the spatial moments P ( E .  q )  of the distribution are as follows 
1121: 
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where f i  are Legendre polynomials; F; are the moments of the dimensionless function 
F(n,  v),  iniroduced in (3). and are determined by the recurrence 

FP = $1 (5 1 
wheret 

g ( s ) = l l t - ' - " d t [ l  - & ( - ) ( I  -t)"-&(2/i)t"].  

For E >> W z 0, including the case m c i, one can find the spatial moments by using 
the well known Laplace transformation method [14, 15, 9, 10, 111 (see also the appendix). 
This leads to asymptotic W << E expansions for P; in terms of some powers of W f E .  The 
first terms are as follows: 

where 4 are determined by the recurrence 

while F; still satisfy (5) both for m > a and m < i .  
Form < a the second term in the curly brackets in (6) appears to be leading for E >> W 

(except n = 0, of course): for m > a the relative w > 0 corrections in the moments of 
the deposited momentum distribution (- (W/E)"-'I2) are much greater than ones for the 
damage or range distributions, which are - (W/E)Zm+'12 [91. 

We wiIl not analyse in detail the conditions which are necessary for the series (6) to be 
rapidly convergent: however, note one of them: (W/E)4m << 1. Below, when discussing 
the W / E  < 1 asymptotes of the solutions, we suppose that the ratio W / E  is small enough 
for the few first terms in (6) to determine the spatial moments with good accuracy. In 
particular, the noted condition for pertinent values of W / E  excludes too small values of m 
from the consideration. 

Defining the function F ( x ,  q)  to have the moments F;, we can write the corresponding 
expansion for the distribution itself: 

I t  can be immediately checked, by comparing (7) with analogous formulae in [9] or 1131; 
that the function F(x, 17) is proportional to the derivative of the W = 0 damage profile: 

t More precisely, the function li(s) is defined by this integnl only for R e s  > m ;  otherwise the analytical 
continuation is assumed; the latter can be easily obtained by expressing the integral in terms of the B function 
[9, 131. 
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where FCE)(x, q) is the deposited energy distribution for W = 0 in dimensionless variables 
( F ( x ,  q )  in the notation of [13]). 

The expansions (6),(8) give a clue to the only method used earlier in semianalytical 
investigations to calculate the deposited momentum profile. The method includes tabulation 
of a set of the moments taking into account a pertinent number of terms in the expansion 
(6), and forthcoming approximate reconstruction of the distribution from the moments (for 
example, by the Pad6 approximants technique). However, we are going to show below that 
this method, being very simple, useful, and informative, nevertheless fails for some cases 
and can lead (and had led) to qualitatively incorrect results. The sensitivity of the problem 
to the factors to be considered is different for relatively small values of m (roughly m < 4) 
and large ones. So, we discuss these regions separately. 

-1s 

Figure 1. Two leading terms in the moment-like expansion (8) of the deposited momentum 
distribution: the functions 3(x .  q)  (a) and F ( x , q )  (b) form = A ;  ?j = 0.4 (1). q = 0.6 (Z), 
q = 0.8 (3). q = 1 (4). 

For smal1,values of m and W << E ,  the first two terms in the expansion (8) really 
can provide a good approximation for the whole distribution. Figure 1 demonstrates the 
behaviour of the functions F(x, q) and F ( x ,  11) for m = and a set of incidence angles. 
The method of tabulation is discussed in detail in [13, 121. Figure 2 presents the whole 
distribution (with two terms in (8 )  taken into account) form = i ,  q = 1 (normal incidence) 
and different values W I E  < 1. In accordance with the physical sense of the deposited 
momentum distribution, it is positive and negative for large depths inside and outside the 
target respectively; the function is negative at the target surface; its absolute value decreases 
with growing W I E .  

However, it is necessary to make the following note here. For moderately small values 
of W I E ,  when the first two terms in (8) do not provide any longer an appropriate accuracy, 
one could try to proceed by taking into account the next terms in the expansion (8) (or, 
equivalently, in (6)). It would be a fatal mistake, at least for calculating the distribution 
near the target surface, for the same reasons, which are discussed below in detail for the 
large-m case. Thus, we have the following alternative for the small-m region: either the 
ratio W I E  is small enough for the two-term approximation to be valid (it is shown below 
that the respective criterion is (W/E)1-3m << l), or the method fails completely to calculate 
the distribution near the target surface. 
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Figure 2. The deposited momentum distribution for normal incidence ( r )  = 1); m = 4; the two 
leading terms in the expansion (8) have been taken inlo account; the curves I ,  . . . , 5  correspond 
to the values WIE = IO-’. 3 x lo-). 10-j.3 x IO4, IO4. 

Figure 3. The leading threshold energy correction in the deposited momentum distribution for 
the large-m use: the function F(x, q);  m = f (a) and m = f (b); q = 0.4 (I), p = 0.6 (2). 
r) = 0.8 (3). q = 1 (4). 

Consider now the relatively large-m case. For better understanding of the nature of 
difficulties appearing in this case, we begin from the concrete exapple. Suppose we want 
to calculate the distribution for m = (such calculations were made in [5] by the Pad6 
approximants method) and some finite value of W / E ,  which is small enough to neglect all 
the terms in (6) except the first two. Suppose also that we have a very powerful computer 
and a very progressive scheme, allowing us to reconstruct a function exactly from its spatial 
moments. Then, after the calculation, we will find that the value of the distribution at the 
target surface is equal to infinity, because aF‘E’/ax(x = 0) = 00 for m = 3 [13]. 

Thus, when, taking into account the two first terms in (6), one obtains a finite value of 
the W # 0 correction in the distribution at the target surface; this finite value is determined 
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exclusively by the degree of inaccuracy of the conventional scheme being used to reconstruct 
the function from its spatial moments, and has nothing to do with an actual value predicted 
by the kinetic equation. Moreover, even if an exact value of P(z = 0) had been found 
accidentally for some fixed value of WIE, one inevitably would obtain a wrong result for 
another value of this ratio, because the formula (8) predicts an incorrect dependence of 
P ( z  = 0) on W/E, as will be shown below. 

So, the relation between the expansion (8) and the distribution to be found requires more 
detailed analysis. The function F ( x .  q) has a singularity at the target surface, specified in 
1121, wherein the pertinent results of numerical tabulation are given also. The function 
3(x ,  q) ,  calculated by the same method, is shown for m = 4.4 in figure 3(a, b). It is 
characterized by a stronger singularity for x 3 0 ( - - I X I ’ / ( ~ ) - ~ / ~  form z f and -In 1x1 for 
m = 3). Thus, for example, the expression (8) in fact gives for fixed 1, E >> W and z + 0 1 

I 

E 
(2M)’PNC 

P =  
3EB 

+ (5)’” {constant x l ~ r ”  + . . .] +. . .] 
for m = f and m = respectively. The expressions on the right-hand sides represent 
the first terms of the formal expansions of P in the region where such expansions are not 
validt. Hence, the formula (8) is not correct in the thin target surface region, although it 
can give a reasonable approximation far away from z = 0. 

An attempt to improve the situation by taking into account a larger (but finite) number 
of terms in the expansion (8) would not be successful, since the next terms in (8) are 
characterized by stronger singularities for z 3 0, which do not compensate each other 
(at least while the full series has not been summed). Another method one could try-to 
introduce the finite-W corrections inte each term separately, i.e., for example, redefine the 
second term to be proportional to the derivative of the deposited energy distribution taken 
for W > O-does not give serious advantages either, since it simply reduces the present 
problem to the problem on, say, the finite-W effects in the damage distribution’s derivative, 
which is no simpler; moreover, the next terms in (8) being treated in the same way can give 
contributions of the same order to P(z = 0). 

Thus, calculations and understanding of characteristic features of the distribution near 
the target surface require an essentially different approach. It appears to be too difficult 
to give a detailed reconstruction of P(z ,  E,  1) in the target surface region on the basis of 
existing analytical methods. However, for P(z  = 0) (which is especially important due to 
the sputtering theory applications), sufficiently full qualitative and even quantitative results 
can be obtained, and are considered in the next section and the appendix. Here one deals 
with two characteristic effects of great importance: a discontinuity of the distribution at the 
target surface, which has not been mentioned in this paper yet, and a specific dependence on 
energetic parameters for W < E,  which, in particular, provides the failure of the moment- 
like expansion near the target surface. 

t Note here a simple example of the function, which is finite and has a formal expansion similar to that for 
m = I,.+ 0 f(2M)1~ZNCE-1/21n[(lrlNC/E)1~Z+~(W/E)~~Z] f ( r N C / E ) .  whereIr=mnstant> Oand f 
is any smooth function, f (0) # 0. 
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3. The distribution at the target surface 

3.1. The discontinuity of the distribution 

The discontinuity of the distribution at the target surface in the infinite-medium model is a 
rather obvious effect from a physical point of view. It is determined by low-transfer-energy 
coIlisions of a projectile right after its start from the plane z = 0. Integrating the kinetic 
equation ( 2 )  over a small region including z = 0 taking (1) into account, we find for E > W 

A W E ,  q )  = P(z  = +0, E ,  q )  - P(z = -0, E ,  q )  

This formula is valid for arbihary cross-section, including the case when electronic stopping 
is taken into account, For the power cross-section and E > W, we arrive at 

A P ( E ,  q )  = (2ME)1/2NCE-" - (1 - (1 - W/E)'-'") 
1 

[ I - m  

I 1 1 
m 1 - m  

-- (1 - (1 - W/E)-"') + - ( W / E ) l - m  

For E > W ,  being -(W/E)'-'", this discontinuity usually can be reasonably neglected. 
For example, it was not taken into account for calculations shown in figures 1, 2, and the 
terms (11) will not be rewritten in the formulae for the leading W << E asymptotic terms 
in the next subsection. However, note here two cases when this discontinuity becomes very 
signilicant. 

The first one is the case of almost tangential incidence of a projectile (q  % 0). Really, 
AP is independent of q ,  while all other contributions into P(z =~ 0) are antisymmetric 
with respect to q. S o ,  for tangential incidence P(z = &O, E ,  q = 0) = f ~ P / 2 ,  and the 
discontinuity cannot be neglected for small enough values of 7 even for W << E .  

The second case-moderately ~ small values of W / E .  Although formally the 
discontinuity represents the effect of lower order, quantitatively it can appear comparable 
with calculated values of the distribution at the target surface, especially for not very small 
m. As an example of what ignorance of the discontinuity can lead to, let us consider the 
results of [5], wherein the deposited momentum distribution was tabulated for m = f and 
normal incidence ( p  = 1). The curve for the case W / E  = in the notation 
of [5]) indicates positive values of the distribution for z < 0. It is a very strange result 
from a physical point of view. Really, right after the beginning of the cascade the full 
momentum (z component) in the half-space z < 0, prso = 0; during the cascade prio 
constantly decreases, because every particle penetrating the plane z = .O either brings a 
negative amount of momentum in (if moving in negative 'direction), or takes a positive 
one out (otherwise). So,  at least integrated over the region z -= 0 deposited momentum 
must be negative. It is an ignorance of the discontinuity at the target surface that is mainly 
responsible for such a significant error, since for this case the formula (1 1) gives even larger 
AP than the value of P(z = 0) indicated in 151. 

(E1 /E  = 

3.2. The W << E asymptotes 

In the present subsection we are going to consider a simple evaluation for finding the 
E >> W asymptote for P(z = 0). To be determined, the analytical evaluation is oriented to 
the case m > i, but the final result is valid as well f o r m  c a. Being not very rigorous, this 
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method does not use a complicated mathematical technique and can be applied with some 
restrictions for more realistic approximations for the cross-section, but it allows us to find 
only a very few terms in asymptotic expansions and does not give calculable expressions for 
some coefficients. A more complicated, regular method for finding asymptotic expressions 
for P(z = 0) is discussed in the appendix. 

Let us expand the distribution to be found in terms of Legendre polynomials with respect 
to angular dependence, analogously with (4), and use the notation 

W E )  = L - P d z ,  E) dz. 

The functions Pf(z, E) satisfy the well known system of integrodifferential equations [9]. 
Integrating these equations over z ,  one expresses P& = 0, E) in terms of the functions 
Yf(E). A simple dimensional argument shows that Yf can be represented in the form 
Yl(E) = f(2ME)1/Z~f(W/E), where xf are dimensionless functions. For simplicity, we 
consider an example of finding the asymptotic expression for PI (Z = 0, E), which can be 
expressed in terms of XI as follows: 

PI (Z =0, E) 

r-’/2-mXo(W/Er)dt -Xo(W/E)[l- (1 - W/E)-’”]}. (12) 

Although the functions xf are not known, some statements on their behaviour can be 
made. In accordance with the boundary condition (I), xI(1) = 0 for 1 # 1. Being the 
spatial moments of the distribution, ~1 are continuous functions of W/E. The values xf(0) 
correspond to the solution in the W = 0 case [12]: xf(0) = j”Ffi(x)dx, f i ( x )  being the 
I t h  angular harmonics of F ( x .  q). It was noted above that the relative corrections in all 
moments P; are - (W/E)”-’/’ for E >> W, so one can assume that the same is true for 
the functions xr: 

xdW/E) zz xd0) + ,ff(W/E)2”-11z W << E (13) 

where ,f~ = i,” E(x) dx - F y ’ ( x  = 0). The validiry of (13) can be shown more rigorously 
using the results of the appendix. 

The last term in (12) is -W/E and can be neglected. The first one is finite for W/E -+ 0 
and has the asymptotic expansion [constant + constantx (W/E)”-’/z), where the constants 
are expressed in terms of xo(O), 20. It is the second integral in (12) that determines the 
difference between the orders of the W z 0 corrections in the spatial moments and in 
Pl(z = 0, E ) .  k t  us examine this integral for m = +: 

= - xo(0) ln(E/ W) -k constant -k constant x (W/E)”-’/’ i- .... 
Making a similar evaluation for other m and 1, after multiplying by e(q) and 

summarizing on even I ,  we find the following threeterm asymptote for P(z = 0, E,  q), 
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W / E  << 1 :  

P(z  = 0, E ,  q )  = (2ME)”’NC/(3E2”) 

6373 

for m = 3 

Form < i the coefficients of the first terms are expressed via F ( x ,  q): 

For < m c 4; the expressions (15) for E P ) ( q ) .  Dl(q) ,  of course, can be easily 
obtained directly from the kinetic equation for W = 0. A similar representation was 
used in I131 to tabulate the deposited energy distribution at the target surface for W = 0, 
the effective numerical method of tabulating expressions of this kind being discussed 
also. The coefficients A3(q), Ei’”)(q), D2(q) can be similarly expressed in terms of the 
function F(x, 7). The approach being discussed does not give calculable expressions for 
Az(q),  EF’(q), D3(q) ,  because the expressions for these coefficients include integration of 
xr(6) over in the interval (OJ). An altemative approach, giving a general method for 
finding calculable expressions for all coefficients, is discussed in the appendix. In principle, 
these formulae allow us to calculate an arbitrary number of coefficients in the asymptotic 
expansions (14); the corresponding results for the leading terms for m = 4 and m = 4 
are demonstrated in figure 4(a, b). However, such calculations are very complicated, and it 
is difficult to reach high accuracy in some cases; moreover. the necessity of very accurate 
tabulations is questionable for the rough model being considered. 

Figure 4. The M e - m  deposited momentum distribution at the targel surface: the leading 
WJE << 1 asymptotic term coefficients Ai(s) form = f (a) and Ol(q)  form = f @) (see also 
the formula (14)) as functions of incidence angle cosine. 

It would be a more interesting and important task to examine the qualitative features of 
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the dependence of P(z = 0) on energetic parameters. A competition of the three terms in 
the expansion (14) leads to essentially different dependences of the distribution at the target 
surface on energetic variables for different values of m (or, more generally, for different 
types of low-transfer-energy asymptote of the cross-section), and explains the failure of the 
moment-like expansion approach, which was discussed in the previous section. One can 
see that, in general, the asymptotic W / E  << 1 expansion for P(z  = 0) contains some terms 
which do not appear in expansion (6) for the spatial moments. 

For m < a ,  the thiid and first terms in (14) are the leading ones, and coincide with 
the first two terms of the moment-like expansion (8). The second term in (14) represents 
the largest subsequent correction (excepf maybe, the case of very small m, when even the 
series for the spatial moments converges very poorly for reasonable values of W / E ) .  It can 
be neglected for (W/E)'-3m << 1; otherwise, one cannot proceed by taking into account 
additional terms in (8) either, and more sophisticated techniques (for example, the approach 
considered in the appendix) should be used for calculation. 

From a formal point of view, a similar situation takes place also for 4 < m c 4 (with 
the only restriction that in this case the finite W = 0 solution can be obtained and the first 
term in (14) is largest for W / E  + 0); however, in practice the second term can hardly be 
neglected for any reasonable value of W / E ,  and the moment-like expansion (8) appears to 
be useless. 

We have already shown in the previous section that the moment-like expansion approach 
fails €or m > f .  The formula (14) indicates the main reason for this: the finite-W corrections 
in P(z  = 0) (- (W/E)'161n(E/W) and - (W/E)'/"" for m = 3 and 1 3 < m < i 2 

respectively) are essentially larger than ones in the spatial moments (- (W/E)"-l/z). For 
m > no finite result can be found for P(z = 0) in neglecting threshold energy, as shown 
earlier in the direct W = 0 calculation 1121; the formula (14) indicates that for m = 
and m > f the distribution at the target surface is characterized by logarithmic and power 
singularity respectively for W / E  + 0. The physical origin and characteristic features of this 
specific behaviour for relatively large m were discussed in detail in [12] for W = 0; some 
estimations obtained appear useful. In particular, for the noha l  incidence case (r, = 1) and 
m > ;. P(z = 0) for W = 0 can be roughly estimated as follows [12]: 

P(Z = 0, E ,  ?) = 1) C -6m~(2ME)'12~A(,(E) (16) 

where UA(E) = f(T/E)'/2du(E, T), N(2hf!!3)%A(E) being the average sum of 
absolute values of momenta of recoils created by a projectile per unit path length; 
f l m  = J so F(x,  r, = 0)d.r. For W # 0, the analogous evaluation taking into account 
the cut-off of the cascade for E c W leads again to the formula (16) with uA(E) = 
~ ~ ( T / E ) ' / 2 d u ( E ,  T). The function F ( x ,  q = 0) can beeasily tabulated [12]; the respective 
values of Pm being ,61/2 % 1.7/3, ,6113 % 3.3/3. For the power cross-section with m = 7 ,  
UA(E) = 6CE-'I3[1 - (W/E) ' l6]  and the formula (16) gives -5% error when used to 
estimate Dl(q = 1). Form = 4, UA(E) = CE-'ln(E/W) and the formula (16) gives an 
exact result for the leading asymptotic term, as can be easily verified by comparing (16) 
with (14), (15). 

I m  
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Appendix. Laplace transformation method for finding distribution at the target 
surface 

We are going to use a modification of the well known Laplace transformation method for 
finding the W << E asymptotes for P(z = 0, E ,  7). The method was initially proposed 
for the Kinchin-Pease equation [14], and later was extensively applied for calculation of 
the spatial moments of the damage cascade theory distributions 11.5, 9-11]. The method is 
based on introducing a logarithmic variable U = In(E/W) instead of E and the Laplace 
transformation with respect to U. A bar will be further used to denote Laplace transforms 
of the functions, for example: p;(s) JFP;(Weu)e-sudu. Laplace transformation being 
applied to the kinetic equation leads to the following recurrence relations for p;(s): 

Note here that the two-term asymptote (6) for the moments arises from the two major poles 
(at s = ; + 2mn and s = 1 + 2m(n - 1)) of p;(s) calculated in accordance with (AI). It 
is convenient to introduce some new functions G;(s): 

Recurrence relations for G;(s) are local with respect to s. 
Our local purpose is finding expressions for the Laplace transforms of the functions 

1 
21 + 1 PdE) = - p - d z  = 0, E )  + ( I  + l ) P I + l ( Z  = 0, E ) ]  

The functions rpl(E) represent the angular harmonics of the function qP(z = 0, E ,  q). 
Excluding the terms connected with the discontinuity of the distribution at the target surface 
from the present consideration, we further suppose 1 to be even. Integrating the kinetic 
equation over z ,  after the Laplace transformation one can find 

@,(s) = ~ ~ ~ - ~ l l ( s + Z m ) * l ( s + Z m )  (A3) 

while the functions *l(s) can be expressed in terms of G;(s): 

Let us define the functions Gl(slx) as a set of solutions of the following system of 
equations: 

- -VGl-~(slx) + ( I  + l)Gr+l(slx)l 
a 
ax 

I 
= ( Z +  1 ) s  t - ' - " d t [ G r ( s ~ x ) - P ~ ( ~ ) ( l  -t)"-"G&lx/(l -t)b) 

0 

- f i ( f i ) t s -bG~(~ l~ / t2")  - G(x)Gy(s) 

x [ l  - f i ( f i ) ( I  - t)" - F j ( f i ) t S ] ]  
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with the normalization condition 
m 

GPO) = 1, Gr(slx) dx = $1. 

It is easy to check that the functions G;(s) coincide with the spatial moments of the 
functions G~(slx). For any fixed s, the system (A5), (A6) is essentially similar to ones for 
different W = 0 damage cascade distributions in dimensionless variables. For example, the 
deposited momentum W = 0 problem [I21 is a special case of (As), (A6) with s = 1: 
f i ( x )  G&x). The deposited energy distribution W = 0 problem [I31 is a special case 
of (As) with s = 1, when the normalization condition Gf = 610 is used instead of (A6). 
For other fixed values of s, the system (A5). (A6) in principle can be solved by the method 
which was discussed in detail in [13, 121. Thus, any functionals, including the functions 
G~(slx) with fixed s, can be considered as known values. 

The sum on the right-hand side of (A4) represents the Fourier transform of the function 
Gl(s1.r) with respect to x ,  so the integral can be rewritten in the form 

In particular, fors  = f we have GY’($ = xl(0). Now we can rewrite the formula (A3) as 
follows: 

The leading W << E asymptotic terms in backward Laplace transforms are obtained by 
calculating contributions of a few firit poles of @&). The three major poles are as follows: 

(i) SI = f - Zm-provides the W = 0 result, if it is finite (i < m 4 4); 
(ii) sz = -m-the first pole of Z~(S + 2m); 
(iii) s3 = 1 - 4m-the first root of the equation Zo(s +4m) = 0, determining the first 

pole of GY’(s + 2m) in accordance with (Al), (A2). 

Contributions of these poles give the threeterm expansions (14), the coefficients being 
expressed in terms of the values GY’(s) at s = sj and, maybe, some associated functions. 

For m # 5, j., a all the poles are simple, and contributions of the poles are -+ WO, 
wIf2-m w2m-1/2 in ’ agreement with (14). Consider, for example, the contributions of two 
leading poles for $ < m < and m $: 

I l l  

Multiplying by (21 + l)P,(q) and summarizing on even 1, we find the expressions for 
the coefficient functions B y ’ ( q )  and BF)(q ) ,  the former being the same as in (15). and 

The values m = 4, f are characterized by the presence of the second-order poles, which 
lead to appearing logarithmic factors in the respective terms of backward Laplace transforms. 
Being a bit more complicated than in the previous case, the evaluation is straightforward 
and expresses the coefficients in (14) in terms of = s j )  and (d/ds)G$(s = sj ) .  
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